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“MODERATE-m” BALLOONING MODES

1n

QUADRAPOLE STABILIZED TANDEM MIRRORS*

W.M. Nevins and L.D. Pearlstein

Lawrence Livermore National Laboratory
Livermore, Ca 94550 USA

ABSTRACT

The B-limits on the central cells of non-axisymmetric tandem mirrors
due to moderate-m ballooning modes are studied. Both finite-Larmor-
radius effects and corrections associated with the finite extent of the bal-
looning modes in the plane perpendicular to B are retained. The assump-
tion of short perpendicular wavelength together with the large ellipticity
of the flux surfaces near the magneto-hydrodynamic (MHD) anchor cells
allows a reduction of the three dimensional problem into a sequence of three
one-dimensional problems. The marginal stable boundary for the Mirror
Fusion Test Facility (MFTF-B) is calculated, and compared with that ob-
tained from a low mode number calculation. '

* This work was performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract number W-7405-ENG—48.
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1. INTRODUCTION

Ballooning modes have been studied extensively in connection with magnetic con-
finement of plasmas because these modes should limit the plasma pressure that can be
contained by a given magnetic field. The figure of merit is § = 87P/B?, where P is
the plasma pressure and B is the magnitude of the magnetic field. In the past few years
a great deal of progress has heen made in analyzing ballooning modes by employing the
“large-m” expansion,! which allows one to reduce the ideal MHD ballooning mode problem
to the solution of a second order ordinary differential equation along each magnetic field
line. More recent analyses in axisymmetric systems (e.g., tokamaks) have demonstrated
that modifications associated with the radial mode structure (the “1/m corrections”)? and
with kinetic effects® (charge separation due to the difference between the electron and ion
gyroradius, FLR effects?) improve the stability boundaries.

In this paper we present an analysis of the limit on 8 due to ballooning modes in
quadrapole stabilized tandem mirrors, including both effects. We will focus on the tandem
mirror configuration MFTF-B at the Lawrence Livermore National Laboratory.>® We find
that these corrections have such a strong stabilizing effect that the beta limits are not set
by ideal MHD ballooning modes in this machine. In fact, we believe that these stabilizing
terms are so important that it is unlikely that these modes will set the beta limits in any
current or future quadrupole stabilized tandem mirror experiments.

An analysis of ballooning modes in non-axisymmetric systems which includes both
corrections requires the solution of a three dimensional eigenvalue problem. We accomplish
this by utilizing a separation in time scales to reduce the three dimensional problem to a
sequence of three quasi-one-dimensional problems. Ballooning modes are essentially shear
Alfvén waves. Hence, the most rapid communication time is along the magnetic field. It is
this rapid communication that allows one to decouple the variation in the ballooning mode
eigenfunction along the magnetic field from the variations across B, and thereby obtain to
this order an ordinary differential equation along the magnetic field.}~3

In axisymmetric systems there is only one remaining non-ignorable coordinate, so the
resolution of the radial mode structure becomes a relatively straight-forward one dimen-
. sional problem.?”. Using the WKB approximation only one constant of the ray motion, the
frequency of the ballooning mode, is required to guarantee the integrability of the ray equa-
tions of motion. However, in non-axisymmetric systems we are left with a two-dimensional
problem in the plane perpendicular to B. We are able to solve this two dimensional prob-
lem by using the formalism of semi-classical mechanics (essentially WKB theory extended
to several dimensions).® An analysis of ray trajectories shows that there is an additional
separation in time scales associated with the bending of the highly elliptical flux bundles
in the transition region between the MHD anchor and the center cell of a tandem mirror.
This further separation in time scales allows us to reduce the remaining two dimensional
problem into a sequence of two one dimensional problems. The first of these is solved by
using phase integral techniques. The remaining time scale is then dealt with in the local
approximation since the WKB frequency splitting associated with this long time scale is
insignificant.



The plan of the paper is as follows. In Section 2 we review the “large-m” formalism
as it applies to tandem mirrors.® In Section 3 we review the ideal MHD beta limits due
to these ballooning modes and describe the very important structure of the concomitant
eigenmodes and eigenspectra. In Section 4 we show how the formalism of semi-classical
mechanics may be used to obtain a global dispersion relation which includes both kinetic
effects?® and the “1/m” corrections.? In Section 5 we describe our procedure for computing
marginal stability boundaries. In Section 6 we present an analytic computation of the
marginal stability boundary that is valid near ideal MHD marginal stability. In Section 7
we present numerical results for the axicell configuration of MFTF-B, and finally in Section

8 we summarize our results.

2. LARGE-m THEORY AND OTHER APPROXIMATIONS

The “finite-m” correction to ideal MHD ballooning modes was originally developed for
tokamaks??. The “large-m” formalism describes modes in which the typical scale length
for variation of the perturbation across the magnetic field is short in comparison to either
the equilibrium scale lengths, or the scale length for variations of the perturbation parallel
to B. An eikonal approximation, ¢ ~ @(s) exp [iS(8,)], is then employed to describe the
perpendicular variations in the stream function, ¢, which describes the perturbation. The
assumption of rapid perpendicular variation allows one to reduce the MHD ballooning
mode problem to the solution of a second order ordinary differential equation along each

magnetic field line.l ™3

The equation is most simply written in magnetic flux coordinates, (s, 8,v), where 9,
the enclosed magnetic flux, labels a particular flux surface; @ is an angle-like variable that
labels a particular magnetic field line on this flux surface; and s measures the position
along this magnetic field line. In the work reported here we use the long-thin, or paraxial
expansion.’® To lowest significant order in the long-thin parameter, A = R/L (R is a
typical radial dimension and L is a typical axial dimension) there is no difference between
s and the axial distance, z. Hence, we may write the ballooning mode equation as a second
order differential equation in z:

d Q|VS|?2 d  p(z) 9/ 2
dz B3 2;+ B3 VS| (“'.’. — wSpi)

1
B3

(bxv(P.+R)) (Kxb): VsVs|g=0 (1)

where Q = B? + P, — Py is the paralle]l component of the total stress tensor,'® B is the
magnetic field strength p(z) is the mass density, w is the wave frequency, S = 85/68 is pro-
portional to the surface component of the wave vector. Here Q.,; = —(B/pw.;) (6P, /8¢),
where w,; is the ion cyclotron frequency, so that Sgfl.; is the standard diamagnetic drift
frequency. P, and Pj are the perpendicular and parallel pressures, K = b - Vb is the
magnetic curvature, and b is a unit vector parallel to the magnetic field. In this work we
have ignored the finite 3 corrections to the FLR term (see Ref. 3). This approximation
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is justified because we find that Eq. (1) properly describes the most unstable modes only
at modest values of the center cell beta, 5. < 0.1, where the low 8 FLR term dominates.
Because of its length the central cell produces the dominant FLR term.

We will solve this equation subject to the boundary condition 64.5/62 = 0 at the axial
boundaries of the plasma; this is a free, or insulating boundary condition (as opposed to
a conducting, or “line-tied” boundary condition). This boundary condition follows from
requiring that the perturbed current vanish in the vacuum external to the plasma. As
a consequence the structure of the magnetic field beyond the lateral boundaries of the
plasma is left unaltered by the perturbation, although the labels of magnetic field lines
in the vacuum may be interchanged. It is necessary to find MHD equilibria in order
to evaluate the coeflicients in Eq. (1). Non-axisymmetric tandem mirror equilibria are
obtained by using the expansion described in Ref. 11. This involves expanding in both the
long-thin parameter, A, and in 3 = 87P/B?.

A final approximation in the present work is to treat {1.; as constant, independent of
6,7, and z. This approximation can be relaxed with a considerable increase in numerical
computation time. If 2,; varies slowly in the region over which the modes are localized,
as is generally the case, this “local limit” is reasonable. Moreover this FLR term is most
important in the long center cell of tandem mirror,'? where (2.; is nearly constant. We will
see in Sec. 5 how this approximation greatly simplifies the system of equations that must
be solved numerically to obtain the marginal stability boundary for ballooning modes in
a given magnetic configuration.

3. IDEAL MHD RESULTS

Previous analysis of beta limits in quadrapole stabilized tandem mirrors’® have been
based on a study of ideal MHD ballooning modes in the “large-m” limit. We review the
principle results of these ideal MHD ballooning mode calculations here because they will
provide a basis for understanding the full three-dimensional treatment, including both the
kinetic term and the “1/m” corrections described in the next section. The ideal MHD
ballooning mode equation may be obtained from Eq. (1) by taking the limit Q.; — 0.
Since {1.; is proportional to a;/R, this is equivalent to considering a very large diameter
machine, in which the ion gyroradius, a;, is very much less than a radial scale length, R. In
the ideal MHD limit each term in the ballooning mode equation is proportional to |VS|Z.
Dividing the equation through by its value at the midplane of the center cell, we obtain
an equation which depends only on the orientation of VS. In the ideal MHD limit Eq. (1)
provides no information about the magnitude of VS.

This orientation may be represented by
T =2¢S,/Se (2)
The angle, T, between VS and the flux surface at the midplane of the center cell (see
Fig. 1) is given by
T = arctanl'. (3)
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It is found that the marginal stability condition for ideal MHD ballooning modes in
non-axisymmetric tandem mirrors depends on both the field line labels (6,%) and on T'.
At small to moderate values of 3,, the “worst” field line (i.e., the last field line on which
ideal MHD ballooning modes are unstable as 3, is decreased) always occurs at § = 0, /2.
These field lines lie on one of the principle axes of the elliptical flux surfaces. Due to the
standard symmetry of quadrupole tandem mirrors we need only consider one quadrant.
Hence, we need only consider MHD stability in the neighborhood of § = 0. In this and
all that follows the subscript “a” refers to the quadrapole MHD anchor cell, the subscript
“p” refers to the axisymmetric electrostatic plugging cell, and the subscript “c” refers to

the central cell

The worst value of 1) generally lies about midway out in the radial profile. Figure 2
shows the critical value of 8. for marginal stability in MFTF-B vs. 1. The peak value of
B in the MHD anchor cell is held fixed at 8, = .55, while § and T' have been chosen to
minimize 3.. Negative values of 3. appear in Fig. 2 because stability to ideal MHD infinite-
m ballooning modes was not a design requirement for MFTF-B. It was recognized, as a
result of the calculations described here, that the kinetic effects would stabilize the infinite-
m ballooning modes. Mathematically, we have obtained marginal stability boundaries by
artificially allowing negative pressures, and hence, negative 3 in the center cell. We see
that the worst flux surface at ¥ /t1)eage = 0.48 lies at the bottom of quite a gentle well in
critical 3.. Similarly, in Fig. 3 we show the critical value of 3, vs. I for the same values
of 3, and B.. In Fig. 3 0 is held fixed at zero and v is fixed at ¥ /veq4 = 0.48, the worst
field line for ' = 0. We see that the worst orientation, I' = 0, lies at the bottom of a very
steep well in I'. When I’ varies from 0 to .25, the critical value 3. increases by 15%.

The most striking feature of these results is the strong dependence of the center-cell
beta limit on the orientation of V.S. Mathematically, this strong dependence results from
the field line bending term in Eq. (1),

4 QIUSP
dz B3

d -
&%

The z-dependence of the coefficient in this term is dominated by the variation of |[V.S| with
z. Although S is independent of z,

VS =5,V + S,V (4)

has a strong z-dependence because of the z-dependence of the covariant basis vectors,
Vi and V6. This dependence, which is purely a result of the equilibrium flux surface
geometry, is most pronounced in the neighborhood of the transition regions where the flux
surfaces are highly elliptical. We may gain some insight into the behavior of this term
by temporarily ignoring the finite-beta corrections to the vacuum flux surfaces. The flux
surface geometry may then be obtained analytically.!® The basis vectors satisfy

(3)

cos?f sin? 0]
b

ot =2 | 5+ 5
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« 2 2
|V0|2 __1_ [sm 6 + cos 0} , (6)

T2 {0%(z)  T3(2)
and
VO-Vzb:—[ 1 _ ]sinOcosO' (7)
o?(z) T3(2) ’
where
T =\/290(z) cos ¥, (8)
and

y =/2¢7(z)sin 6, (9)

are the coordinates of a field line, while B, (z) = 1/0(z)7(z) is the magnitude of the vacuum
magnetic field. The partial derivatives of S may be written in terms of T as

So

= — si 10
S¢ 2¢ sin T ( )
and

Se = Sgcos Y. (11)

Hence, |VS1|? varies with %,6, Y, and z as

S2B, [sin®*(T - 8) cos®*(T —6)

207 . 12
V= T TR (12)

If the major axis of the elliptical flux surface is nearly vertical ie 7 >> ¢ in the region where
field line bending occurs, then the bending energy is minimized when sin(Y —8) ~ 0. Small
departures of (T — ) from zero introduce a large term, proportional to 72 /g2, into the
bending energy. Note that the bending energy is minimized when VS is nearly parallel
to the major axis of the elliptical flux surface. Flux bundles are bent in the direction
§€ ~ VS x B. Hence, the perturbations that minimize the bending energy are those
that bend flux bundles perpendicular to the flat plane of the elliptical flux surfaces. This
observation motivates an analogy between these elliptical flux bundles and a flat steel
spring. Such a spring is easily bent in the plane perpendicular to its flat surface; but it is
very difficult to bend within the flat plane. The normal modes of such a system have two
distinct time scales; a high frequency associated with perturbations that bend the spring
(or flux bundle) in its flat plane, and a low frequency associated with perturbations which
bend the spring perpendicular to this plane. In Sec. 4 we will show that the propagation
of ballooning modes in quadrapole stabilized tandem mirrors exhibits these two disparate
time scales. It is this separation of time scales that allows us to reduce the two dimensional
problem across B into a sequence of two quasi-one-dimensional problems.

We will show in Sec. 7 that the ideal MHD results presented in this section are far
too pessimistic. When effects associated with the perpendicular structure (i.e., “1/m
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corrections”) and charge separation due to finite ion gyroradius (i.e., “kinetic terms”) are
included the beta limit is greatly increased. For the example considered here, MFTF-B,
ideal infinite-rn calculations yield instability even at 5. = 0 as there is enough pressure
in the axisymmetric plug cell (which has bad curvature) to drive ballooning modes. The
finite—m calculations described below yield a the central cell beta limit somewhere in the
range .1 < (. < .22. This result is in part due to the stabilizing kinetic term, which
acts over the entire axial length of the tandem mirror, while the destabilizing pressure-
curvature term acts only in the axicell and the transition region between the axicell and
the MHD anchor cell; and in part due to the “1/m corrections”. The latter improvement
is due to the fact that the orientation of the perpendicular wave vector, as described by
I, is determined by the perpendicular structure of the mode, and is no longer free to be
adjusted so that it fits into the deep well in Fig. 3 near I' = 0.

4. METHOD OF SOLUTION

The stabilizing kinetic effects enter Eq. (1) through a term proportional to Sy. Un-
fortunately, the single field line problem provides no information about the magnitude of
this term; this information must be obtained from a solution of the eigenvalue problem
in the plane perpendicular to B. We find that it is necessary to include the kinetic term
when analyzing the perpendicular mode structure because this problem becomes singular
in the limit €2,; — O (see Sec. 6). This is in contrast to the ballooning mode problem in
axisymmetric systems, like tokamaks, where Sy is a constant of the ray motion so that
the kinetic term and the radial mode structure (which leads to the “1/m corrections”)?
can be analyzed independently. In non-axisymmetric systems, like quadrapole stabilized
tandem mirrors, these two problems are coupled through Sy, so that they must be treated
together.

Equation (1) describes the behavior of “large-m” (i.e.,Sg > 1) ballooning modes on
each magnetic field line. A numerical solution of this equation along a particular field line

yields the local dispersion relation,
D(6,%,T,9% 8., B,...) = 0. (13)
The explicit dependence on Sy enters through the parameter
0 =w(w— SeMi). (14)

Note that the local dispersion relation depends not only on the field line labels (6,%)
and the wave parameters VS and w; but also on the equilibrium parameters §.;, ., etc.
Our problem is to “sew” the solutions on each field line together in a self-consistent way
to obtain both the mode structure in the (8,v) plane and the global dispersion relation.
We accomplish this by using the theory of semi-classical mechanics—essentially WKB
theory generalized to many dimensions. In the semi-classical formalism the local dispersion
relation D may be viewed as the Hamiltonian governing the motion of a ray in the four
dimensional phase space, (6, v, Sg, Sy ), where the field line labels (6, 1) are the coordinates,
and the covariant components of VS, (Sg, Sy ), are the conjugate momenta.
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The ballooning mode ray then obeys the equations of motion

0-___3D , :

: —350’ ( 5)
. 0D

¥ =os,” 16)
. 8D

So = -~

and
. aD
S, =— —. 18

The ray motion described by Egs. (15)-(18) may be either integrable or stochastic.!4
The Hamiltonian D is clearly a constant of the ray motion since the ray must stay on the
surface D = 0. If there is a second independent constant of the motion, then the ray orbit
must lie on a two dimensional surface, X, embedded in the four dimensional phase space.
It can be shown that the surface ¥ is topologically a torus. This surface is central to the
semi-classical theory of mechanics, where it is known as the “invariant torus”. Ray orbits
that lie on an invariant torus are said to be integrable. If a second constant of motion does
not exist, then the ray orbit fills a three dimensional region of phase space (the energy
shell), and the ray orbit is said to be stochastic.

The theory of semi-classical mechanics is concerned primarily with integrable systems.
If the ray orbits are stochastic little can be said about the mode spectrum; while if the
ray orbit is integrable, then the dispersion relation may be obtained by quantizing the two

independent actions,

I={ dq-Vs. (19)

These two independent actions are obtained by following a closed path that goes either
once around the invariant torus the short way (C1), or else once around the torus the
long way (C;). This is illustrated in Fig. 4. The quantization condition for the systems

considered here is
L = (2ne + 1) m. (20)

We find that the modes associated with the largef values of n; are more stable than the
ni = 0 modes. Hence, in studying marginal stability one need only consider normal modes

satisfying
Ik =m. (21)

Before attempting to apply the methods of semi-classical mechanics we must determine
if the ray orbits associated with “large-m” ballooning modes in the axicell configuration
of MFTF-B are integrable. This is accomplished by a direct numerical integration of
the ray equations of motion. A ray is initialized with a particular set of phase variables
(60,%0, Seo)- The fourth phase variable, Syo, is chosen such that the ray lies on the
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“energy shell”, D = 0. The orbit is advanced in time using Eqgs. (15)—(18) together with
the Livermore Solver for Ordinary Differential equations (LSODE)?®. At each time step
the ballooning mode equation, (1), is integrated on the current field line to calculate D
and its derivatives. The value of D is monitored to check the accuracy of the integration.
Integrability may then be determined from a Poincaré map;!® Each time that the ray
passes through the hyper-plane ) = 1o, the current values of 6 and Sy are plotted. If the
ray orbit is integrable, then these points will lie on a smooth curve as in Fig. 5, while if
the ray orbit is stochastic then they will fill an area in the (6, Sy) plane. Figure 6 shows a
stochastic orbit. We did not follow this orbit long enough to see this area-filling property

in the Poincaré map.

We find that the ray orbits are often, but not always integrable. When the equilibrium
parameters are in the general vicinity of ideal MHD marginal stability the ray orbits are
found to be integrable; while as we move further from ideal MHD marginal stability (by
increasing 3., for example), this integrability breaks down. This loss of integrability occurs
because far from ideal marginal stability the field line bending term can be balanced by
the kinetic and inertial terms in the center cell. Hence, the axial eigenfunctions that we
obtain in this regime show substantial field line bending occurs in the center cell where
the flux bundles are are nearly circular, in addition to bending in the transition region
between the axisymmetric plug cell and the MHD anchor cell where the flux bundles are
strongly elliptical. As a result, the time scale separation is lost far from ideal marginal
stability. The assumption that Sy > 1 also breaks down for the most unstable modes far
from ideal MHD marginal stability, so that this loss of integrability does not by itself limit
our calculation.

It is really somewhat remarkable that the any ray orbits are found to.be integrable,
as it an an unfortunate fact of classical mechanics that most two dimensional Hamiltonian
systems are not integrable. There are two general cases in which two dimensional systems
become integrable. Either there is a symmetry (perhaps a hidden one), or there is a
separation of time scales. Our system is an example of one in which there is a separation
in characteristic time scales of the ray motion. This may be seen in the projection of the
ray orbit into the (6, ) plane shown in Fig. 5. There is a rapid motion directed generally
parallel to Vi superimposed on a slow precession in 8. This separation of time scales
is associated with the extreme ellipticity of the equilibrium flux surfaces in the transition
regions. Ballooning modes are associated with the bending of flux bundles in this transition
region. When a flux bundle with a circular cross-section in the central cell is mapped into
this region it also takes on an elliptical cross-section. As we pointed out in Sec. 3, these
elliptical flux bundles act much like flat steel springs; they are easily bent perpendicular
to the flat plane, but are very stiff when bent in the flat plane. Hence, the ballooning
ray has a rapid quiver associated with bending the elliptical flux bundles parallel to their
major axis in the transition region. The action associated with this rapid motion, I4,q, is
then an adiabatic invariant over the slow motion. Hence, I tast 15 the second independent
constant of motion which guarantees the integrability of ray orbits.

A numerical approximation to If,,; may be obtained by following the ray orbit once
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around the torus the short way, accumulating fVS - dq along the ray orbit, and then
closing the loop by using a two-point Simpson’s rule integration to step back to the initial
point along a line of constant . This scheme allows us to evaluate If,,, once for each
point on the Poincaré map. The numerically determined value of If,,; — 7 is plotted in
Figs. 5-6. The initial phase variables were chosen such that I¢,,; = 7 for the first loop in
order that the dispersion relation, Eq. (21), be satisfied. We see from Figs. 56 that Iy,
is indeed well conserved on the integrable orbit, while it is not conserved on the stochastic
orbit. The variation in the numerically determined If,,; on the integrable orbit in Fig. 5
is mainly due to numerical errors introduced by the two point Simpson’s rule integration
used to close the integration contour.

The separation of time scales also provides us with some information about the fre-
quency spectrum. The separation in frequency between modes with neighboring values of
N fast 18 Aw ~ 27 /Tfq4e, where

8
Tfaat :EIfaat

o
= f dg- = VS, (22)

and the integral is to be taken once around the torus the short way. Noting that |0V S/8w|
may be interpreted as 1/vgroup, We see that Ty,,; is essentially the period of the fast
motion. Similarly, the frequency separation between modes with neighboring values of
Nylow 18 Sw ~ 27 /Ty10w, Where

Totow = qu' %vs, (23)

with the integral taken once around the torus the long way (I,iow is essentially the area
enclosed by the line segments connecting the points on the Poincaré map in Fig. 5). Hence,

bw Tfaat
AR At i 24
Aw Talow <l ( )

i.e., the line spectrum must be like that shown in Fig. 7. It follows that we need only
do a careful job in quantizing If,,¢, while the remaining parameter that determines Liow
may be chosen to maximize instability. This will put us within éw of the most unstable
mode. Instability is maximized when the derivative of If,,; with respect to the remaining
parameter vanishes. This approximation is analogous to estimating the dispersion relation
in a plasma slab by using local theory at the most unstable value of the inhomogeneous
coordinate. This procedure generally does reasonably well, although it misses WKB cor-
rections (which are usually stabilizing) associated with the radial mode structure. In the
present instance, we retain WKB corrections associated with the fast motion, but ignore
small stabilizing corrections associated with the slow motion. This is an important practi-
cal simplification because it is now only necessary to follow a ray once around the torus the
short way and compute just Ifq,¢. This in turn requires on the order of 102 integrations of
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the balloon equation, and takes several seconds of CPU time on a CRAY-1. A numerical
computation of I,j,,, (Which we are avoiding) would require that we follow the ray for at
least one full period of the slow motion. This requires between five and ten minutes of
CPU time on a CRAY-1. Hence, ignoring corrections to the mode frequency of order éw as
compared to corrections of order Aw saves hours of computer time in computing marginal

stability boundaries.

5. MARGINAL STABILITY BOUNDARIES

It is necessary to find the invariant torus associated with the unstable “large-m”
ballooning modes in order to obtain the dispersion relation and the marginal stability
boundary. We expect that the most unstable ballooning modes will be localized in the
neighborhood of the worst field line of ideal MHD theory. Hence, we may fix 6y and g as
the labels of this field line. The initial value of Sg, Sgo, then selects a particular invariant
torus from among those intersected by the curve

0 = 6o,

¢=¢'0’ . (25)
D@6, T,0%) =0.

Given a particular set of equilibrium parameters, the frequency of the most unstable
mode satisfies the equations

Ifa,t(eo,’l,bo,Soo,ﬂz;ﬂc,...) =7 (26)
and
o
65 Ifaa't =0. (27)
If we require this mode to be marginally stable, we must satisfy the additional equation
0
‘5‘_;[.1'&!1 = 0. (28)

In general, marginal stability boundaries are obtained by solving the three Equations,
Egs. (26)—(28), simultaneously. A further simplification is possible if we make use of the
assumption that (2,; is constant together with the assumption that Sy has only a small
fractional variation along the ray orbit during one period of the rapid motion. These
assumptions allow us to replace the third equation with the condition

]
5592 =0. (29)

which may be solved analytically using Eq. (14) to obtain,

1
= 5590941'- (30)
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This results in a considerable simplification, as it is now only necessary to solve two
equations, Egs. (26) and (27), simultaneously with 2 set equal to — (Spof2;/2)?. Our
experience indicates that the simultaneous solution of Eqs. (26) and (27) provides a very
good approximation to the actual marginal stability boundary obtained by solving Egs.
(26)—(28). Evidently the assumption that Sy has only a small fractional variation over one
period of the rapid motion of the ray orbit is well satisfied.

Either set of equations may be solved numerically to find the marginally stable value
of Q,; for a particular set of equilibrium parameters, 3.,8,,08p,... . Then one of these
parameters, say (., may be varied to obtain the marginal stability boundary in the (Q.;,5;)

plane.

6. NEAR THE IDEAL MHD LIMIT

When studying ballooning modes in realistic tandem mirror equilibria the coefficients
in Eq. (1) are only known numerically. Hence, Eq. (1) must be numerically integrated
to obtain the local dispersion relation, Eq. (13). Nevertheless, it is possible to obtain an
analytic approximation to I, that is valid for systems near ideal MHD marginal stability
by expanding in both the ellipticity of the flux surface in the transition region where line
bending occurs (¢ = o /7 <« 1), and then making a subsidiary expansion in the localization
of the unstable eigenfunction about the worst field line (§ <« 1). The local dispersion
relation has a minimum at the worst field line. In the neighborhood of this field line the
local dispersion relation may be written as

D(6,,T,0%) = [Dyyn? + Doot?] + Dyr(5T ~ )

— 1
+ Dg269% + Dyené + 3 Drr (6T - K€)? (31)

where € = 0 — 6, 7 = ¢ — 2, 6T =T — Ty, 602 = 02 + 2,1, Dye = Dye + Dyr,
and Dgg = Dgg — x? Drr describes the slow variation of D with 8. Here (8o,%) labels the
worst field line, I’y determines the worst orientation of V.S on the worst field line, v3,p
is the ideal MHD growth rate on the worst field line, and k = — Dgr /Drr. The coefficients
of the various terms in Eq. (31) are obtained by differencing the numerically determined
local dispersion relation about the worst field line, as indicated. The first five terms in
Eq. (31) describe the localization of the MHD drive about the worst field line, while the
orientation, I', of VS enters only in the final term. The coefficient of this last term is
of order ¢~2. It is large compared to the coefficients of the other terms in Eq. (31) since
the bending energy is very sensitive to I' (see Sec. 3). The large coefficient of the final
term in Eq. (31) is, as previously mentioned, the direct consequence of the large restoring
force associated with bending flux bundles parallel to the major axis of the elliptical flux

surfaces.

Using the fact that € < 1 together with the assumption that the mode is well localized

about the worst field line [€2, (n/0)?, 612, Q2%, v%,4p ~ 6% < 1), it is possible to obtain
an analytic expression for a second constant of the ray motion; namely the action, Ifq.¢,
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associated with the rapid time scale of the ray motion. The analytic treatment begins by
noting that D is a constant of the ray motion (i.e., D = 0 on the ray orbit). Hence, we
may set D = 0, and solve for 6T = 6T'® 4+ §T'() order by order in the small parameter e.

At lowest order we find that

~ §é°.
To first order we find
1/2
sT) = { [2 (Dnz 5Q% + D¢977£) + Dil"/’n + Deo£2 /DIT} (33)

~ §el.

Armed with this expression for sT("), we now proceed to analyze the ra.y motion. At
leading order the equations of motion are given by

3 r 1) 0

E >~ _.—S'ZDFF6P ~ 8¢ ) (35)
Sy —g-prrar(” ~§e7t, (36)
Sp ~ kDpp6T™ ~ g1, ' (37)

where we have used the fact that 6T — k€ = §T'(1). Parameterizing the ray orbit by the
enclosed magnetic flux, ¥, we look for solutions of the form S¢ = Sgs(n) + Se,, € =
€5(n)+&,, and Sy, = Sy¢(n) + Sys; where the subscripts f and s label the term associated
with the fast and slow motion respectively. Then £¢(n) satisfies

K| _ % [fon
d'r] orbit dt dt
FO + K,f, + Klﬁf
~ 38
2v0(1 +n/v0) (38)
This relation may be rewritten as
wan s | (39)

2¢o(1 4+ n/%0)  To+ k€, + K€y ’

Integrating once, and using the initial data that {; = 0 when n = 0, we obtain

£r(n) = —— (To + &) [1 = (1+ /o) ™/?] (40

13



or n
€r(n) ~ —PO% +..., (41)

where we have used 6 < 1 in writing (41).

An analysis similar to that leading to Eq. (41) demonstrates that

Sef(n) = Ses [(1 Fn/ibo)™? — 1]

”;’E—SO&+-.-, (42)

where we have used as an initial condition that Sgs(n = 0) = 0.

We are now ready to evaluate If.,:. Integrating over one cycle of the fast motion we

d€f)
Tfost = Sy + Se—= | d.
fast f<¢ adn n

: I' To+ér®
= foolag ")

find

SesT'
= dn. 43
f 2D (43)
Since the function Sy(n) is single valued, the leading contribution to If,,; is
7S,
Ijast = AO (6”2 + B(ﬁa)z) ’ (44)
where A ] v |
A= ~55—[(493Dyy — 4oDyelo + DeaT3) Drr] ", (45)
and ‘ )
| 20% (DysDas — Dyo)
B = (46)

Dq: (493 Dyy — 49D yel'o + Deel'3)
At this stage we have our first important result. Equation (44), together with the

“quantization condition If,,, = m, provides a quadratic equation for Sg,(,),
H =w,;SE, — [w? + ¥4 up + BE] Soy + A=0. (47)

The solution of Eq. (47) yields the double valued function Sy,(£,). Our remaining quanti-
zation condition of the set (20) is simply the condition that the area enclosed by the two
branches of Sp,(§,) in the (Sq,,0,) plane be equal to (2m, + 1), that is

]{ Spsdf, = (2m, + 1) (48)
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The coefficient of Sy, in Eq. (47) is proportional to £,;. Hence, Eq. (47) is singular in
the limit Q,; — 0. The upper branch of the function Sg,(§,) — oo as 2,; — 0. In this
limit the area enclosed by the two branches of Sg, (£, ) is infinite if w? < —7,2“ Hp: and zero
otherwise. Since infinity can be represented by an arbitrarily large integer, we conclude
that the second quantization condition is satisfied for all frequencies w? < —v3,,p- That
is, we obtain a continuous spectrum ending at the frequency obtained from local, infinite-m

analysis.

When the FLR term is included in our expression for 22 [see Eq. (14)], we obtain our
second important result. Equation (47) is no longer singular. Noting that our quantization
condition requires I¢,, = (2ny + 1)m, we see that we must order So, ~ e 1 since A ~ e 1.
Similarly, we must require €,; ~ € so that 22 is of order ¢®. These are crucial results
- since the large value of Sy is necessary to justify our use of the “large m" expansion,
while the small value of §2.; indicates that ballooning modes can be stabilized even when
a;/Rp < 1. Since the splitting due to the “slow” motion is of order ¢ we may evaluate this

phase integral in the local approximation, i.e

9 g H=o0. (49)

¥ =557 " &,
Substituting Eqs. (30) and (46) into Egs. (49) leads to
Qu; = —% . (50)
and 34
Se = ~573 (51)
YMHD

on the marginal stability boundary. An important limitation of this model becomes ap-
parent when we evaluate §022. We find

2 .
60° = 5712\41“3- (52)

Hence, this analytic model is only valid near ideal MHD marginal stability, where v3,,p <
—~62|2¢2Dy,y /Dq:|. As the system is pushed further from ideal MHD marginal stability
our subsidiary expansion in § breaks down. To some extent, this problem can be dealt with
by numerically integrating ray trajectories using Eq. (31) as a model dispersion relation.
Equation (31) is itself essentially a small § expansion, so that the numerical integration
of ray orbits generated from this model “Hamiltonian” also cease to give reliable results
as v3,p increases further. It becomes necessary to obtain the global dispersion relation
by numerically integrating equations of ray motion generated from the exact (numerically
determined) local dispersion relation as described in Sec. 5. ‘

7. NUMERICAL RESULTS

Figure 8 shows the marginal stability boundary for MFTF-B in the (8., a;/R,;) plane.
Stability to ideal MHD ballooning modes was not a design constraint for MFTF-B since
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it was realized that ideal MHD ballooning modes would be stabilized by the kinetic effects
described here. The central cell beta of MFTF-B is limited by the “rigid” ballooning
mode beta limit'"!®, 3. < .22, for the values of beta in the plug cell (8p = .11) and anchor
cell (3, = .55) assumed in these computations. The pressure in the transition region is
sufficient to drive ideal MHD ballooning modes even in the absence of any central cell
pressure. We have introduced an artificial negative pressure in the center cell in order
to reach ideal marginal stability at 3. = —0.167. We are able to track the stability
boundary from ideal MHD marginal stability at 5. = —0.167 to 8. ~ 0.1. At this point an
examination of the ray orbit shows that, while the orbit performs several rapid oscillations,
it ultimately escapes like the ray orbit shown in Fig. 6. Hence, the ray orbit is no longer
integrable, and the semi-classical procedure outlined in Sec. 4 is no longer justified. As
long as the ray orbit continues to perform even one rapid oscillation it is possible to define
I¢a51, and to solve Egs. (27) and (28). Points on the marginal stability boundary obtained
in this manner are connected by a dashed line in Fig. 8. Figure 9 shows the values of Sgo
on the marginal stability boundary. We see that the condition Sy >> 1, required in the
derivation of Eq. (1), also breaks down near 3. = 0.1. Hence, there is little significance to
the dashed portion of the marginal stability curve. The effect of varying beta in the MHD
anchor cell, 3,, is shown by the lower curve in Fig. 8, in which 3, has been reduced from
0.55 to 0.40. Just as in ideal MHD ballooning mode theory, we find that decreasing (3,

tends to destabilize the system.

8. SUMMARY

The main result of this calculation is the marginal stability boundary shown in Fig. 8.
An important feature of the marginal stability boundary is the fact that the characteristic
value of Sy, at marginal stability, decreases as 3. and (Q,; increase (see Fig. 9) until the
calculation breaks down at 3. ~ 0.1. At this point a;/R, = 3.3x1073 and S = 7.27. It is
possible to extend the calculation to larger values of (3., as indicated by the dashed curves
in Figs. 8-9, but two assumptions underlying this calculation (S¢ > 1 and integrability
of the ray orbits) are not satisfied in this regime. The axicell configuration of MFTF-B
lies on the right edge of Fig. 8 at a;/R, ~ 0.05. It is clear from Figs. 8-9 that “large-m”
ballooning modes will not limit the center cell beta at these large values of a;/R,. The
rapid decrease in Sy on the marginal stability boundary suggests that at larger values of G,
and a;/R, the most dangerous modes will be low m modes with a global structure in the
plane perpendicular to B. The beta limit imposed by such modes is bounded from above
by the “rigid” ballooning mode stability condition!?'!® (3. < 0.22 for these parameters).
Hence, we may expect the center cell beta limit to fall in the range 0.1 < 8 < 0.22. The
extension of “large-m” theory beyond its domain of validity gives a marginal stability
boundary (the dashed curve in Fig. 8) that crosses the “rigid” ballooning mode stability
limit as a;/R, increases. This suggests that at the rather large values of a;/R, in the
axicell configuration of MFTF-B (a;/R, ~ 0.05) the actual center cell beta limit will be
close to the “rigid” ballooning mode stability limit of 8. = 0.22.
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Figure Captions

Fig. 1. Schematic depiction of a flux surface in TMX-U. The planes z = +27 locate the
transition regions between the central and end cells. It is in this region that flux tubes
are bent by ballooning modes. The orientation of the basis vectors Vi, V6, b at z = 0 is
shown along with that of the wave vector, VS. Also shown is the angle T.

Fig. 2. Critical value of 3, as a function of 1. The values of beta in the MHD anchor cell
and the axisymmetric plug cell are held fixed at 3, = 0.55 and 8, = 0.11. Theta and T’
were chosen at each value of ¥ to minimize (..

Fig. 3. Critical value of 3, vs. T for 8, = 0.55, 8, = 0.11, and 8 = 0; % is held fixed at
Y/ Pedge = 0.43.

Fig. 4. Phase-space trajectory and invariant toroid for two degrees of freedom. The C;
and C; curves are for defining the action integrals I; and I>. The toroidal helix is the
trajectory; normally it is not closed.

Fig. 5. An example of an integrable ballooning ray orbit: (a) the projection of the ray orbit
onto the ¥, 6 plane; (b) surface of section plot of S¢ vs. # (c) points connected to form a
smooth curve; and (d) our computed value of If,,:, which is shown to be well conserved.

Fig. 6. Same plots as in Fig. 4.2, except that the orbit is now stochastic.

Fig. 7. Sketch of the line spectrum that is characteristic of a system with well-separated
time scales. Each normal-mode frequency is labeled by the WKB mode number, (nq,:,

nalow)-

Fig. 8. Marginal stability boundaries in the 3., a;/R, plane. The projected operating
point is a;/R, = 5. x 1072, The value of (3, is 0.11, while 3, = 0.55 (upper curve) or 0.40
(lower curve). The rigid mode stability limit is 8. = 0.22 for 3, = 0.55.

Fig. 9. A plot of 8 vs. 8, at marginal stability. For this plot 3, = 0.11, and 3, = 0.55.
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